Application Note

/inritsu

MG3700A Vector Signal Generator

	Contents	
 Physi BS Tell 	cal Channel Basics	3 ≥ 16 ≥
• UE Te	est	65 🛛
• Repe	ater Test	118 🖻
 Additi 	onal Information	142 🖻
 Discover What's Possible™ MG3700A-E-F-6	Slide 2	/inritsu

UTRA/FDD Frequency Bands

scover What's Pos	sible™	Sli	de 3		/inritsi
VI	800	2 × 10	830 - 840	875 – 885	Japan
V	850	2 × 25	824 – 849	869 – 894	USA, Asia
VIII	900	2 × 35	880 – 915	925 – 960	EU, Asia
IX	1700	2 × 35	1750 – 1785	1845 – 1880	Japan
Ш	1800	2 × 75	1710 – 1785	1805 – 1880	EU, Asia, Brazil
IV	1700/2100	2 × 45	1710 – 1755	2110 – 2155	3G band in USA
I	1900	2 × 60	1850 – 1910	1930 – 1990	PCS band ir USA
I	2100	2 × 60	1920 – 1980	2110 – 2170	UMTS core band
VII	2600	2 × 70	2500 – 2570	2620 – 2690	New
Operating Band	Band Title	Bandwidth [MHz]	Uplink [MHz]	Downlink [MHz]	

HSPA Standardization in 3	3GPP
 HSDPA (High-speed Downlink Packet Ac 	cess) was
standardized in 3CPP Pelease 5	
Staliuaruizeu III JOFF Release J.	
» The downlink peak data rate will increase to	3.6 IVIDPS, 7.2 IVIDPS
and potentially beyond 10 Mbps.	
» HS-DSCH	
- HARQ for downlink	
- Fast BTS downlink scheduling	
- Shorter downlink 111	
HSUPA (High-speed Uplink Packet Acces	ss) was
standardized in 3GPP Release 6.	
» The uplink peak data rate will increase to 1 to	o 2 Mbps and 3 to 4
Mbps.	
» E-DCH	
 HARQ for uplink 	
 Fast BTS uplink scheduling 	
 Shorter uplink TTI 	
Discover What's Possible™	
MG3700A-E-F-6	

Н	SDPA	UE Ca	pabiliti	es (Ca	tegories)	
• 3GPP	TS 25.306	6 specifies	UE capabil	ities for HS	-DSCH categ	ories.
	Category	Maximum Number of HS- PDSCH Codes	Minimum Inter- TTI Interval	Maximum Number of Transport Channel Bits per HS-DSCH TTI	Achievable Maximum Data Rate [Mbps]	
	1	5	3	7298	1.2	
	2	5	3	7298	1.2	
	3	5	2	7298	1.8	
	4	5	2	7298	1.8	
	5	5	1	7298	3.6	
	6	5	1	7298	3.6	
	7	10	1	14411	7.2	
	8	10	1	14411	7.2	
	9	15	1	20251	10.2	
	10	15	1	27952	14.4	
	11	5	2	3630	0.9	
	12	5	1	3630	1.8	
	 Category QPSK onl 	1 to 10 suppo y.	rt 16QAM and	I QPSK. Cate	gory 11 and 12 s	upport
Discover What's I MG3700A-E-F-6	Possible™ S		Slide 5		/ IN	ritsu

Category	Maximum Number of E- DPDCH Codes, Minimum SF	Support for 10 and 2 ms TTI	Maximum Data Rate with 10 ms TTI [Mbps]	Maximum Data Rate with 2 ms TTI [Mbps]	
1	1 × SF4	10 ms	0.7	-	
2	2 × SF4	10 ms and 2 ms	1.4	1.3	
3	2 × SF4	10 ms	1.4	-	
4	2 × SF2	10 ms and 2 ms	2	2.8	
5	2 × SF2	10 ms	2	-	
6	2 × SF2 + 2 × SF4	10 ms and 2 ms	2	5.7	
 All catego 	pries support 1	0 ms TTI.			

Down	link Physical Ch	nannels
 Common Chann AICH is a char sends status ir (busy or idle) of allows UEs to transmission, v HS-PDSCH is HSDPA specifis support one or based on Time users 	nel that exists only at the ndicators on the downlink, of the Random Access Ch verify the state of the acce which helps to minimize c a shared channel across ic high-speed packet data more <i>HS-PDSCH</i> s. Shar e-Division Multiplexing (TE	e physical layer. <i>AICH</i> , reflecting the state hannel (RACH). This ess channel before ollisions. all users requesting a services. Each cell may ring of the <i>HS-PDSCH</i> is DM) across multiple
» HS-SCCH is a HS-SCCH con including the u modulation sch	control channel associate iveys the <i>HS-PDSCH</i> allouser identity, the number of neme.	ed with the <i>HS-PDSCH</i> . cation information of spreading factors, and
Discover What′s Possible™ MG3700A-E-F-6	Slide 12	/inritsu

Downlink Physical Channels	
 Dedicated Channels DPDCH and DPCCH are the dedicated physical channels targeted to transport information between the network and the UE using a dedicated link on the physical channel. They are both time multiplexed and carried on the DPCH. E-RGCH is used for transmitting single set-up/down scheduling commands that affect the relative transmission power the UE may use for data channel transmission (<i>E-DPDCH</i>), effectively adjusting the uplink data rate up/down. E-HICH is used for transmitting positive and negative acknowledgements for uplink packet transmission. F-DPCH is basically a stripped-down version of DPCH that handles the power control. Only the TPC field is kept when comparing <i>F-DPCH</i> with DPCH. <i>F-DPCH</i> is used in cases that DCH causes too much overhead and consumes too much code space when accepting a large number of users using a low data rate service, like VoIP. 	
Discover What's Possible™ MG3700A-E-F-6 Slide 14	L

Uplink Physical Cha	innels
 Common Channels PRACH is shared by UEs. It is used for system. 	r initial access of the
 Dedicated Channels DPDCH and DPCCH are separated due interference that may be caused in the Uphone. HS-DPCCH carries the feedback signal HS-DSCH (incoming packets). The HS-signalling consists of Hybrid-ARQ Ackne ACK) and Channel-Quality Indication (C) E-DPDCH is used for transmitting E-DC processing from the UE to the BS. E-DPDCH is used for transmitting contract of the transmission from the UE to the UE to	e to potential audio JE, such as a mobile ling related to downlink DSCH-related feedback owledgement (HARQ- CQI). CH transport channel ol information about the BS.
Discover What's Possible™ MG3700A-E-F-6 Slide 15	/inritsu

	BS Test					
3GPP 6 7 8	TS 25.141 (Release 7) Transmitter Receiver Performance requirement					
	Test	Wanted Signal Generator with BERT	Interference Signal Generator	CW Generator	AWGN Generator	Others
6.4 6.4.2 6.4.3	Output power dynamics Power control steps Power control dynamic range	MG3700A				Code Domain Analyzer
6.6	Transmit intermodulation		MG3700A			Spectrum Analyzer Circulator
7.2 7.3 7.4	Reference sensitivity level Dynamic range Adjacent Channel Selectivity (ACS) Duckies the set of the	-	*		*	
7.6	Blocking characteristics Intermodulation characteristics	-	*	Or MG3642A 2.08 GHz		MA1612A 3 GHz Combiner
7.8	Verification of the internal BER calculation	1				
8.2	Demodulation in static propagation conditions	-			*	MA1612A
8.3		MG3700A				3 GHz Combiner
8.4	Demodulation of DCH in moving propagation conditions				MG3700A	Fading
8.5	Demodulation of DCH in birth/death propagation conditions					Simulator
8.6 8.11 8.11.1 8.11.3	Verification of the internal BLER calculation Performance of signaling detection for HS-DPCCH ACK false alarm in static propagation conditions ACK mis-detection in static propagation conditions				*	
8.12	Demodulation of E-DPDCH in multipath fading conditions					MA1612A 3 GHz
8.13	Performance of signaling detection for E-DPCCH in multipath fading conditions				MG3700A	^{Combiner} Fading Simulator
*: MG37	'00A for wanted signal generator generates two signals with interference signal, CW	or AWGN.				
Dis MG	cover What's Possible™ 33700A-E-F-6 Slide 16				Inrit	SU

Wanted Signal + GMSK Interference Signal Setup Example producer for MG3700 System Transfer & Setting Si Eile Test tion File<u>G</u>en. <u>H</u>elp Sottem Transfer & Setting S 1xEVDO EVIS 1xEVDO EVIS TDMA HSDPA/HSUPA Downlink HSDPA/HSUPA Downlink W-CDMA Downlink (Standard) Wulti-Qarrier Multi-Qarrier Mgbile WimAX DVB-T/H Blocking characteristics Intermodulation characteristics License option MX370104A UL RMC 12.2 kbps: 3 \times Oversampling UL RMC 12.2 kbps: 4 \times Oversampling ieg) Del ¥Anritsu Corporatio Export Path NECOMA(BSblock ing Test) ¥Anritsu Corporation¥Opr Full Path -19.5000 Export File Name: UL_RMC_12_2kbps_m xport File Name: GMSK_PN9_m ent 1 = * en 490000 MM MS Value: 1157 WCDMA BS Blocking test with GMSK Exit Resampling Available frequency offset between wanted signal and GMSK interference signal Requires about 1 day to Discover What's Possible™ /inritsu Slide 40 MG3700A-E-F-6

t	Demonstra		1	Cattle - Malaa		
-	Paramete	r		Setting Value	_	
+	Scrambling C	Code	-	18		
ł	DICH Informati	on Data	+	All O	_	
ł	Over samplins	on Data	4	3 (III. Interferer. ov3)		
ł	Marker 1	<u>i</u> late		Frame Clock		
t	Marker 2	2		Slot Clock	—	
Ī	Marker 3	3		-		
	AWGN addit	tion		Disable		
ļ	RMS for single ph	ase of IQ	<u> </u>	1157	_	
	IQ output le	evel		$\sqrt{I^2 + Q^2} = 320 \text{ mV}$		
 Channel	Bit Rate	Spreading	Factor	Channelization Code	Relative Power	-
 DPDCH	240 kbps	16	1 40101	4	0 dB	\dashv
DPCCH	15 kbps	256	5	0	-5.46 dB	

3GPP 6 7	TS 25.101 (Release 7) Transmitter Receiver	TS 34.121 (Release 7) 5 Transmitter 6 Receiver					
	Test		Wanted Signal Generator with BERT	Interference Signal Generator	CW Generator	AWGN Generator	Others
6.4 6.4.2 6.4.3	Output power dynamics Inner loop power control in the uplink Minimum output power		MG3700A				Timeslot Power Meter Circulator
6.7	Transmit intermodulation				MG3700A		Spectrum Analyzer Circulator
7.3 7.4 7.4.1 7.4.2 7.5	Reference sensitivity level Maximum input level DPCH HS-PDSCH for 16QAM Adjacent Channel Selectivity (ACS)			*			
7.6 7.6.1 7.6.2	Blocking characteristics In-band blocking Out of-band blocking		MG3700A	*	MG3692B 20 GHz		MA1612A 3 GHz Combiner
7.6.3	Narrow band blocking Spurious response		-	*	MG3692B		MA1612A 3 GHz
*: MG37 count (C	0 ~ 510).	two signals with interference sig	I gnal or CW, p	L rovided that P-C	I CCPCH has i	I imited SFN ⁻	11 bits

8 9	Performance requirement 7 Performance requirement (HSDPA) 9 Performance requirement	irements irements for HSI	DPA	1		
	Test	Signal Generator with BERT	Interference Signal Generator	CW Generator	AWGN Generator	Others
8.2	Demodulation in static propagation conditions				*	
<u>0.2.3</u> 8.3	Demodulation of DCH in multi-path fading propagation conditions					MA1612A
8.4	Demodulation of DCH in moving propagation conditions				MG3700A	3 GHz
8.5	Demodulation of DCH in birth-death fading propagation conditions					Fading simulator
8.10	Blind transport format detection (BTFD) Test 1 ~ 3				*	
9.2 9.2.1	Demodulation of HS-DSCH (FRC) Single Link Performance	MG3700A			MG3700A	Fading simulator
9.3 9.3.1 9.3.1.1	Reporting of Channel Quality Indicator (CQI) Single Link Performance AWGN propagation conditions				*	
9.4 9.4.1	HS-SCCH Detection Performance Single Link Performance				MG3700A	MA1612A 3 GHz Combiner Fading
*: MG37	700A for wanted signal generator generates two signals with AWGN, prov	ided that P-CCF	PCH has <i>limited</i>	/ SFN 11 bits	count (0 ~ 5	simulato 10).

Wanted Signal Setup HSPA or Limited W-CDMA IQproducer			
 UL RMC 12.2 kbps Test – Receiver 	UL RMC 12.2 kbps Test Maximum input level (DPCH) Borformance requirements		
	OCNS multiplexing Total Power without OCNS getting the residual power		
OPD:H IVI Power F322 dB P-CORCH IVI Power F322 dB Point 65-501 Power F522 dB PCH IVI Power F332 dB Point 65-501 Power F522 dB PCH IVI Power F332 dB On-oreal F5 = 256 December 100 Dece	Image: Control and the Superscription of Control and the Superscriptic of Control and the Superscription of Control and the S		
DOINS OFF Power dB Ch Code 2/11/17/23/61/26/60/78/65/84/12/018 SF ± 28 Type	OPDH IM Peeer F1000 dB P-COPCH IM Peeer F1200 dB Channel Edit PDH IM Peeer F1500 dB On Code IF SF + 256 DPH IM Peeer F1500 dB On Code IF SF + 256 DPH IM Peeer F1600 dB On Code IF SF + 126 Data Ph/0122.1000 IM		
H6-P05010 Power Filling dB On Code 11 to 5, 57 + 16 Data Filling Cont	0015 [011] ■ Peerer -10648 0x Code 2/11/17/23/47/88/47/85/04/735/112/115/57 = 128 Type [1010/ms		
	HS-F050102 Power F0000 dB Oh. Code 1 ts S. SF = 1 fB Data F0001 fL		
Discover What's Possible™ MG3700A-E-F-6 S/	lide 69		

Wanted Signal Setup HSPA or Limited W-CDMA IQproducer

UL RMC 64 kbps	• UL RN	IC 144 kbps
Y CDMA Downlink Izproducer/Standard/ for M03700 Ele Edit Exer Seture Transfer Settine Port Entry Settine	Ele Edit Exc Sette Indexes	er Stonder () for M03700
Simulation List. Down List. Scientific Code Image: marketing Code Image: marke	The Devel Sate	Abbre Cade Bin T Telle Preser -124 48 Normalize Preser 19400 49
HS-F000H Preve F400 dB Ox.com 1 u.s. SF = 16 Oxa F=0000 HS-F000H Preve F400 dB Ox.com 1 u.s. SF = 13 Oxa F=0000 HS-F000H Preve F400 dB Oxa 1 u.s. SF = 13 Oxa F=0000 HS-F000H Preve F4000 dB Oxa 1 u.s. SF = 13 Oxa F=0000 HS-F000H Preve F4000 dB Oxa 1 u.s. SF = 13 Oxa F=0000 HS-F000H Preve F4000 dB Oxa SF = 13 Oxa F=0000 HS-500H Preve F4000 dB Oxa SF = 10 Oxa F=0000 HS-500H Preve F4000 dB Oxa SF = 10 Oxa F=0000 HS-500H Preve F4000 dB Oxa SF = 10 Oxa F=0000	Die Edit Georg Gene Timmeler Seiner Image: Seine Seiner Image: Seiner Simulation Laik Down Link Screenbler Code Image: Total Power -1022 dB OPDH Image: Power Total Power -1022 dB PODIOH Image: Power Total Power -1022 dB PDDH Image: Power Total Power -1022 dB PDDH Image: Power FEBD dB PoOH & S-SOH Power FEBD dB PDDH Image: PEBD dB OL OA Image: PEBD dB OL OA Image: PEBD dB PDDH Image: PEBD dB OL OA Image: PEBD dB OL OA Image: PEBD DB DB	10000 10000000000000000000000000000000
UL RMC 384 kbps	HS-5004 Daw Filling dif On Ook Fig. 7 + 128 Outs HS-7002H Prew Filling dif Oh Ook 16.5 57 + 128 Outs HS-7002H Prew Filling dif Oh Ook 16.5 57 + 128 Outs HS-7002H Prew Filling dif Oh Ook 16.5 57 + 16 Outs HS-7002H Prew Filling dif Oh Ook 16.5 57 + 16 Outs HS-7002H Prew Filling dif Oh Ook 16.5 57 + 16 Outs HS-7002H Prew Filling dif Oh Ook 16.5 57 + 10 Outs HS-7002H Prew Filling dif Oh Ook 16.5 57 + 10 Outs HS-7002H Prew Filling dif Oh Ook 16.5 57 + 10 Outs	State 500 State 500
Discover What's Possible™ MG3700A-E-F-6	Slide 70	/inritsu

Wanted Signal Setup HSPA	AlQproducer
• Step C (1 dB step {0,0,0,0,-1})	• Step D (1 dB step {+1})
TPC bit Pattern 000000000000000000000000000000000000	TPC bit Pattern Edit State TPC bit Pattern 111111111111111111111111111111111111
 Step E (1 dB step {-1}) 	 Step F (1 dB step {+1})
TPO bit Pattern Emiliar TPC bit Pattern 000000000000000000000000000000000000	TPO bit Pattern Edit TPO bit Pattern 111111111111111111111111111111111111
• Step G (2 dB step {-1})	 Step H (2 dB step {+1})
TPC bit Pattern Construction 0101	TPC bit Pattern Edit Image: Cancel image: Canc
Discover What's Possible™ MG3700A-E-F-6 Slide 78	∕ınritsu

Wanted Signal Se	tup HSPA IQproducer
» Rate 2: 7.95 kbps (Test 2, 5)) Rate 3: 1.95 kbps (Test 3, 6)
Discover What's Possible™ MG3700A-E-F-6	Slide 80

Wanted Signal Setup H	ISPA IQproducer
Test – Maximum input level (HS-PDSCH for • DL FRC H-Set 1 (16QAM)	r 16QAM)
BISDPA/HSUPA Demolink. Bippeducer. for MG3700 EN Edit Exay Series Edit Exay Series Edit Edit Exay	ISDPA Idit (Ch1) IE Ohamelication Code Othet P UE Monthly P UE Number of Rivshal Charrel Code ORC Error Insection Correct • Modulation Number of HARD Processes P UE Torreport Block See Monantino Bit Venal R buffer See Processe If Venal R buffer See Processes P UE Payload Data If HARD Process Cycle Inter-TIT Distance If Start Othet P Inter-TIT Distance If Process Settire File Inter-TIT Distance
INS-FD3CH8 Power FB000 dB Ch Code 2 to 5, SF = 16 Date FB-CBCH	OK Cancel
HS-PDSCH power/code * 3GPP standard shows HS-PDSCH Ec/lor for total multi-code power. Discover What's Possible™ MG3700A-E-F-6 Slide 81	HS-PDSCH Ec/lor: -3 dB HS-PDSCH power/code = -3 + 10 log (1/4 codes) = -9.02

				11	an	spo	JIL	DIC	JCK	31	ze				
kt	L(kt)														
÷	÷.					3G	PP TS 25.	.321 Ann	ex A						
Index	TB Size	Index	TB Size	Index	TB Size	Index	TB Size	Index	TB Size	Index	TB Size	Index	TB Size	Index	TB Siz
1	137	33	521	65	947	97	1681	129	2981	161	5287	193	9377	225	1663
2	149	34	533	66	964	98	1711	130	3035	162	5382	194	9546	226	1693
3	161	35	545	67	982	99	1742	131	3090	163	5480	195	9719	227	1723
4	173	36	557	68	1000	100	1773	132	3145	164	5579	196	9894	228	1754
5	185	37	569	69	1018	101	1805	133	3202	165	5680	197	10073	229	1786
6	197	38	581	70	1036	102	1838	134	3260	166	5782	198	10255	230	1818
7	209	39	593	71	1055	103	1871	135	3319	167	5887	199	10440	231	1851
8	221	40	605	72	1074	104	1905	136	3379	168	5993	200	10629	232	1885
9	233	41	616	73	1093	105	1939	137	3440	169	6101	201	10821	233	1919
10	245	42	627	74	1113	106	1974	138	3502	170	6211	202	11017	234	1953
11	257	43	639	75	1133	107	2010	139	3565	171	6324	203	11216	235	1989
12	269	44	650	76	1154	108	2046	140	3630	1/2	6438	204	11418	236	2025
13	281	45	052	70	11/5	109	2083	141	3695	173	6554	205	11625	237	2061
14	293	46	674	78	1196	110	2121	142	3/62	174	6702	206	11835	238	2098
15	305	47	686	79	1217	111	2159	143	3830	175	6793	207	12048	239	2130
10	200	40	744	00	1239	112	2190	144	3099	170	7044	208	12200	240	21/5
17	329	49	704	01	1202	113	2230	145	3970	170	7041	209	12400	241	2214
10	341	50	724	02	1200	114	2279	140	4042	170	7 100	210	12/13	242	2204
19	303	51	751	03	1000	115	2320	147	4115	1/9	7420	211	12943	243	2290
20	277	52	701	04	1351	117	2302	140	4109	100	7430	212	12415	244	2337
21	200	55	704	00	1200	110	2404	149	4200	101	7304	213	10410	245	23/9
22	309 401	55	702	87	1405	110	2440	151	4342	182	7840	214	13007	240	2422
23	413	56	806	88	1430	120	2537	152	4420	184	7981	215	14155	247	2510
25	425	57	821	80	1456	121	2583	152	4581	185	8125	210	14411	240	2555
20	437	58	836	90	1483	122	2630	154	4664	186	8272	218	14671	250	2602
20	449	59	851	91	1509	122	2677	155	4748	187	8422	219	14936	251	2649
28	461	60	866	92	1537	124	2726	156	4834	188	8574	220	15206	252	2696
29	473	61	882	93	1564	125	2775	157	4921	189	8729	221	15481	253	2745
30	485	62	898	94	1593	126	2825	158	5010	190	8886	222	15761	254	2795
31	497	63	914	95	1621	127	2876	159	5101	191	9047	223	16045		2.00
32	509	64	931	96	1651	128	2928	160	5193	192	9210	224	16335		
	000						_020		2100						

Wanted Signal Setup HSPA IQproducer

 H-Set² 	1	•	H-Set 2	2		
	Default setting	g			Default setting	
SDPA Edit (Ch1)			HSDPA Edit (Gh1)			2
Channelization Code Offset	2 UE Identity 0		Channelization Code Of	fset 2 🛨	UE Identity	0
Number of Physical Channel Code	CRC Error Insertion	Forrect 💌	Number of Physical Channel C	ode 5 🚊	CRC Error Insertion	Correct -
Modulation	QPSK Vumber of HARQ Processes 2		Modula	tion QPSK 💌	Number of HARQ Processes	3
Transport Block Size Information	41 Virtual IR Buffer Size 9	600	Transport Block Size Informa	tion 41	Virtual IR Buffer Size	9600
RV information j	Payload Data F	N9fix 💌	RV informa	tion 0 🛨	Payload Data	PN9fix 💌
	Transmitting Pattern Edit			Tran	smitting Pattern Edit	
HARQ Process Cycle	6 : Inter-TTI Distance 3		HARQ Process C	vole 6	Inter-TTI Distance	2
TTI Start Offset 🛛 j			TTI Start Of	fset 0 🚊		
□ Process Setting File □	-		F Process Setting F	ile		
Channelization Code Offset Number of Physical Channel Code Modulation Transport Block Size Information	Image: CRC Error Insertion Image:	◎	Channelization Code Number of Physical Channe Mod Transport Block Size Infor	Offset 2	UE Identity CRC Error Insertion Number of HARQ Processes Virtual IR Buffer Size	0 *** Correct • 3 ** 9600 **
RV information	6 Payload Data	PN9fix	RV infor	mation 0	Payload Data	PN9fix 💌
	Transmitting Pattern Edit			Tr	ansmitting Pattern Edit	
HARQ Process Cycle	6 inter-TTI Distance	3	HARQ Process	Cycle 6	Inter-TTI Distance	2
TTI Start Offset			TTI Start	Offset 0 🚟		
Process Setting File	· .		Process Setting	File		
ОК		Cancel	ОК			Cancel
)iscover What's Pr	seible™		_		<u></u>	
	00001010	Slide 86			/	II ILSU
//G3/00A-E-F-6		0				

Wanted Signal Setup HSPA IQproducer

	Default setting			Default setting	excluding
SDPA Edit (Ch1)			(SDPA Edit (Ch1)		
Channelization Code Offset 🛛 🚊	UE Identity 0		Channelization Code Offset	UE Identity	0
Number of Physical Channel Code 5	CRC Error Insertion Correct		Number of Physical Channel Code 5	CRC Error Insertion	Correct 💌
Modulation QPSK 💌	Number of HARQ Processes 6		Modulation QP	SK Number of HARQ Processes	2
Transport Block Size Information 41 😐	Virtual IR Buffer Size 9600		Transport Block Size Information 41	Tirtual IR Buffer Size	7200
RV information	Payload Data PN9fix 💌		RV information	Payload Data	PN9fix 💌
Tra	nsmitting Pattern Edit			Transmitting Pattern Edit	
HARQ Process Cycle 6	Inter-TTI Distance 1		HARQ Process Cycle 6	Inter-TTI Distance	2
TTI Start Offset 0			TTI Start Offset 2		
Process Setting File	-		Process Setting File		
	,				
HSDPA Edit (Ch1)	S	3			
Channelization Code Offset	UE Identity 0		ОК		Cancel
Number of Physical Channel Code 4	CRC Error Insertion Correct 💌	l -			
Modulation 16QAM	Number of HARQ Processes 6				
Transport Block Size Information 36	Virtual IR Buffer Size 9600				
RV information	Payload Data PN9fix 💌				
	Transmitting Pattern Edit				
HARQ Process Cycle 6	Inter-TTI Distance 1				
TTI Start Offset 0					
Process Setting File					

• H-Set 5	Default setting excluding	• H-Set 6	Default setting by H-Set 3
IBDPA Edit (Ch1) Chamelization Code Offset P Hunber of Physical Chameli Code Modulation OPSK Transport Block Size Information RV information D Trans Transport Block Size Information Transport	UE Monthly D ORC Error Interion Number of HARQ Processes B Virtual IR Buffer Size Payload Data PRMFix • aptitute Pattern Edit	ISDPA Edit (Oh1) Channelization Code Offset [2] Number of Physical Channel Code [10] Modulation [OP] Transport Block See Information [1] RV information [0]	UE Martiny 0 = CRC Error Insertion Correct V Number of HARD Processes 6 = Virtual IR Buffer Site 19200 = Poyload Date [PR9fit. V
HARD Process Over 6	Inter-TTI Distance	HARQ Process Cycle 6 TTI Start Offeet 0 F Process Settine File	Transmitting Pattern Edit
ОК	Gencel	Otwmnelization Code Other F Number of Physical Charmel Code R Modulation 1 Transport Block See Information R RV information p	UE Monthy D
		HARD Process Cycle TTT Start Offset ☐ Process Setting File	Transmittre Pattern Edd

Wanted S	Signal Set	up HSPA		oroducer
HSS-SCCH-2 ISDFA Edit (20:0) Charaelisation Code Offset Hamber of Physical Observations Modulation DPS Number Transport Block See Mornation D V RV information D Transmitting Pattern ILAPIO Process Oycie Transmitting Pattern ILAPIO Process Oycie Transmitting Pattern Transmitti	ODOI100101010100	HS-SC DEDPA Fait (cho) Channeladion Code O Number of Physical Output Modul Transport Block Size Inform RV inform IV inform IIAND Process O ITER PH 0	CCH-3	UE Menthy Fictor + CRD Environ Methods + CRD Environ Methods + Current = Versual R Methods = Priorite Payload Data Priorite = Inter Edit Inter Titl Distance Fight =
Process Setting File	ISDPA Edit. (Sh4)			Carcel
	Observeitaation Code Offset F Number of Physical Dharnel Code 1 1 Modulation OPSK • Transport Block Size Information 0 1 RV information 0 1 INADA Process Opcie 0 1 TTI Start Offset 0 1 Process Setting File 0 1	UE Mentity B100 CRC Error Insertion Correct Number of HARQ Processes 2 Virtual IR Buffer See 9000 Payload Data PhoFix hitting Pattern Edit hitting Pattern Edit		001111110101010
 HS-SCCH-4 	ОК	Can	cel	
Discover What's Possible™ MG3700A-E-F-6	S	Slide 92		/inritsu

Wanted Signal + GMSK Interference Signal Setup Example producer for MG3700 System Transfer&Setting Sj Eile Test tion File<u>G</u>en. <u>H</u>elp Sottem Transfer & Setting S 1xEVDO EVIS 1xEVDO EVIS TDMA HSDPA/HSUPA Downlink HSDPA/HSUPA Downlink W-CDMA Downlink (Standard) Wulti-Qarrier Multi-Qarrier Mgbile WimAX DVB-T/H Blocking characteristics Intermodulation characteristics License option MX370104A DL RMC 12.2 kbps: $4 \times \text{Oversampling}$ Adjust Rate W-C ¥Anritsu G Export Path NCDMA ¥Anritsu Corporation¥I0producer¥Multic Full Path Ver Sampling Resamp Export File Name: DL_RMC_12_2kbps_AC_m Export File Name: GMSK_PN9_m Component 1 = RMS Value: 1157 WCDMA UE Blocking test with GMSK Exit WCDMA UE IM test with GMSK Resampling Available frequency offset between wanted signal and GMSK interference signal Requires about 1 day to co Discover What's Possible™ /inritsu Slide 94 MG3700A-E-F-6

Wanted Signal Parameters DL RMC Receiver test » excluding Parameter Setting Value Maximum input level Scrambling Code 80_H Physical Channel P-CPICH Power ratio P-CPICH_Ec / DPCH_Ec = 7 dB DTCH Information Data PN9 P-CCPCH SCH PICH P-CCPCH Ec / DPCH Ec = 5 dB SCH Ec / DPCH Ec = 5 dB PICH Ec / DPCH Ec = 2 dB DCCH Information Data All 0 SFN count 4096 Over sampling rate 4 DPCH Test dependent power Ch Code (P-CPICH) 0 Ch Code (P-CCPCH) 1 Ch Code (PICH) 16 Performance requirements » Ch Code (DPCH for DL_RMC_12.2kbps) 96 including Ch Code (DPCH for DL_RMC_12.2kbps_RX) 96 Ch Code (DPCH for DL RMC 12.2kbps MIL) Maximum input level 96 NOTE Use of P-CPICH or S-CPICH as phase reference is specified for each requirement and is also set by higher Ch Code (DPCH for DL_RMC_64kbps) 24 Physical Channel Ch Code (DPCH for DL_RMC_144kbps) 12 P-CPICH P-CPICH_Ec/lor = -10 dB Ch Code (DPCH for DL RMC 384kbps) 6 requirement and is also set by higher layer signalling. When S-CPICH is the phase reference in a test condition, the phase of S-CPICH shall be 180 degrees offset from the phase of P-CPICH When S-CPICH is not the phase reference, it is not transmitted. When BCH performance is tested the P-CPCH E-cloris test dependent. This power shall be divided equally between Primary and Secondary Synchronous channels. Ch Code (DPCH for DL_AMR_TFCSx) 96 Ch Code (DPCH for DL_ISDN) 24 S-CPICH S-CPICH Ec/lor = -10 dB Ch Code (DPCH for DL_384kbps_Packet) 6 OCNS See Table 3.1.4-2 Marker 1 TTI Pulse P-CCPCH P-CCPCH_Ec/lor = -12 dB Marker 2 SCH SCH_Ec/lor = -12 dB Marker 3 AWGN addition Disable PICH PICH_Ec/lor = -15 dB When S-CPICH is the phase reference in RMS for single phase of IQ 1157 when S-CPICH is the phase of DPCH shall be 180 degrees offset from the phase of P-CPICH. When BCH performance is tested the DPCV IQ output level $\sqrt{I^2 + Q^2} = 320 \text{ mV}$ DPCH DPCH is not transmitted. OCNS interference consists of 16 dedicated data channels as specified in table C.6. Necessary power so that to transmit power spectral density Node B (lor) adds to one OCNS /inritsu Discover What's Possible™ Slide 97 MG3700A-E-F-6

DL HSDPA

DL HSDPA HS-SCCH Detection Performance

Physical	Parameter	Value	Note	Parameter	Units	Value
	D CDICH Eallar	10dB		CPICH Ec/lor	dB	-10
F-GFIGH	F-OFICH_EC/IOI	-1008		P-CCPCH Ec/lor	dB	-12
P-CCPCH	P-CCPCH_Ec/lor	-12dB	Mean power level is shared with SCH. Mean power level is shared with P-CCPCH – SCH	SCH Ec/lor	dB	-12
SCH	SCH_Ec/lor	-12dB	includes P- and S-SCH, with power split between both. P-SCH code is S_dl,0 as per TS25.213 S-SCH pattern is scrambling code group 0			
PICH	PICH_Ec/lor	-15dB		PICH Ec/lor	dB	-15
DPCH	DPCH_Ec/lor	Test-specific	12.2 kbps DL reference measurement channel as defined in Annex A.3.1	HS-PDSCH-1 Ec/lor	dB	-10
			Specifies fraction of Node-B radiated power			
HS-SCCH-1	HS-SCCH_Ec/lor	Test-specific	transmitted when TTI is active (i.e. due to	HS-PDSCH-2 Ec/lor	dB	DTX
			minimum inter-TTI interval).	HS-PDSCH-3 Ec/lor	dB	DTX
HS-SCCH-2	HS-SCCH Ec/lor	DTX'd	No signalling scheduled, or power radiated, on this	HS-PDSCH-4 Ec/lor	dB	DTX
HS-SCCH-3	HS-SCCH Ec/lor	DTX'd	HS-SCCH, but signalled to the UE as present. As HS-SCCH-2	DPCH Ec/lor	dB	-8
HS-SCCH-4	HS-SCCH Ec/lor	DTX'd	As HS-SCCH-2	HS-SCCH-1 Ec/lor	dB	Test Specific
HS-PDSCH	HS-PDSCH Ec/lor	Test-specific		HS-SCCH-2 Ec/lor	dB	Teat opecine
	no r boon_calor	Necessary		HS-SCCH-3 Ec/lor	dB	
		nower so that		HS-SCCH-4 Ec/lor	dB	
		total transmit		OCNS Ec/lor	dB	Necessary nower so that
OCNS		power spectral	OCNS interference consists of 6 dedicated data			total transmit power
		density of Node	channels as specified in table C.13.			spectral density of Node E
		B (lor) adds to				(lor) adds to one

Discover What's Possible™ MG3700A-E-F-6

Slide 104

Mean power level is shared with SCH. Mean power level is shared with F CCPCH – SCH includes P- and S-SCH with power split between both. P-SCH code is S_d,0 as per TS25.213 S-SCH pattern is scrambling code group

S-PDSCH associated with HS-SCCH The HS-PDSCH shall be transmitted

1. Balance of power *lor* of the Node-B assigned to OCNS. 2. OCNS interference consists of 6 dedicated data channels as specified in table C.13.

ssociated with HS-Si ssociated with HS-Si reference measurem fined in Annex A.3.1 s allocated equal Ec or when TTI is active

				" Grie			
Parameter	Unit	Value	Inf. Bit Payload	3202			
Nominal Avg. Inf. Bit Rate	kbps	534	III. Bit Payload	0202			
Inter-TTI Distance	TTI's	2	CRC Addition	3202	24 CRC		
Number of HARQ Processes	Processes	2	Codo Blook				
Information Bit Payload ($N_{\rm INF}$)	Bits	3202	Segmentation	3226			
Number Code Blocks	Blocks	1	Turbo-Encoding		0070		
Binary Channel Bits Per TTI	Bits	4800	(R=1/3)		9678		12 Tail Bits
Total Available SML's in UE	SML's	14400	Ant. Data Matabias		7200		
Number of SML's per HARQ Proc.	SML's	7200	ist Rate Matching	1	7200		
Coding Rate		0.67	RV Selection		4800	7	
Number of Physical Channel Codes	Codes	5	NV Selection		4000		
Modulation		QPSK					
Note: This FRC is used to verify	the minimum	inter-TTI	Physical Channel				
distance for UE category 11.	The HS-PDSCH	shall be	Segmentation	b.			
transmitted continuously with	constant power.	The six					
sub-frame HS-SCCH signallir	ng pattern shall i	repeat as					
follows:							
00X0X000X0X0,							
where 'X' marks III in wh	ICN HS-SCCH	uses the					
identity of the UE under tes	st and 'O' mark	s III, in					
which HS-SCCH uses a different	ent identity.						
Discover What's Possible™						Ancike	
Discover variation obsidie			Slide 109				
MG3700A-E-F-6			Silue 100				

	-					
		Parameter		Setting Value		
	Over s	Scrambling Code		4 3 (DL Interferer ov3)		
	RMS fo	RMS for single phase of IQ		1157		
	IQ out	put level		$\sqrt{I^2 + Q^2} = 320 \text{ mV}$		
Channel Type	Spreading Factor	Channelization Code	Timing offset (x256T _{chip})	Power	NOTE	
P-CCPCH	256	1	0	P-CCPCH_Ec/lor = -10 dB		
SCH	256	-	0	SCH_Ec/lor = -10 dB	The SCH power shall be divided equally between Primary and Secondary Synchronous channels	
P-CPICH	256	0	0	P-CPICH_Ec/lor = -10		
PICH	256	16	16	PICH_Ec/lor = -15 dB		
OCNS		See table C.6		Necessary power so that total transmit power spectral density of Node B (lor) adds to one	OCNS interference consists of the dedicated data channels. as specified in Table C.6.	

Demodulation of DCH in Multipath Fading Conditions Test **Connection Example** Wanted Signal Generator Fading MG3700A Simulator Controller ľ Terminator (MP752A) Combiner (MA1612A) AWGN Generator MG3700A Controller • Makes receivable state for DL RMC by FTM (Factory Test Mode) control · Reports internal BLER calculation for received DTCH /inritsu Discover What's Possible™ Slide 114 MG3700A-E-F-6

	Test	Signal Generator	Interference Signal Generator	Others
6	Output power			Power Meter
7	Frequency stability			Frequency Counter
8	Out of band gain			Spectrum Analyzer
9	Unwanted emission			Spectrum Analyzer
10	Modulation accuracy	MG3700A		Signal Analyzer
11	Input intermodulation			Spectrum Analyzer
12	Output intermodulation		MG3700A	Spectrum Analyzer Circulator
13	Adjacent Channel Rejection Ratio (ACRR)			Spectrum Analyzer

-										
Туре	Number of Channels	Fraction of Power (%)	Level settings (dB)	Channelization Code	Timing offset (x256T _{chip})		Code	Toffset	Level settings (dB) (16 codes)	Level settings dB) (32 codes)
ССРСН+SCH	1	12 6/7 9	-9 / -11	1	0	-	69	134	-14	-16
rimary CPICH	1	12,0/7,9	-9/-11	0	0	• •	74	52	-14	-10
PICH	1	5/1.6	-13/-18	16	120	1 1	78	45	-14	-16
CPCH containing	1	5/1.6	-13/-18	3	0	1 1	83	143	-14	-16
CH (SF=256)							89	112	-14	-16
DPCH	16/32	63,7/80,4 in	see table 6.5	see table 6.5	see table 6.5		93	59	-14	-16
(SF=256)		total		l		I 1	96	23	-14	-16
						ŀ	100	1	-14	-16
						ł	105	88	-14	-16
						ł	109	10	-14	-10
						ŀ	115	30	-14	-10
						ł	118	61	-14	-10
						F	122	128	-14	-16
						Ť	125	143	-14	-16
						f	67	83		-16
						[71	25		-16
						[76	103		-16
						ļ	81	97		-16
						Ļ	86	56		-16
						ļ	90	104		-16
						ł	95	51		-16
						ł	98	20		-10
						ł	103	65		-10
						ł	110	37		-16
						t	112	125		-16
						f	117	149		-16
						Ť	119	123		-16
							123	83		-16

UL RMC 12.2 kbps Same setup HSPA or Limited W-CDMA IQproducer								
Icense option MX370101A Icense Non-license Wide Standard)	Created sample rate - 3 × Oversampling							
WCDMA Uplink. 30producer 65 sendard). Inr. MC3700 Elle Ell Tandre Settine WCDMA Uplink. 30producer 65 sendard). Inr. MC3700 Elle Elli Tandre Settine WCDMA Uplink. 30producer 65 sendard). Inr. MC3700 Elle Elli Tandre Settine WCDMA Uplink. 30producer 65 sendard). Inr. MC3700 Simulation Link: Up Link Simulation Link: Up Link Simulation Link: Up Link Power F100 Bine Power F100 Acix Power F100 Bine Oxter F200 Acix Power F100 Bine Oxter F200 B	Concert Edd							
Discover What's Possible™ MG3700A-E-F-6 Slide 141	∕ınritsu							

	ļ	UL R	MC	for UE	Transmitt	er Test	11/06 01-06-01
• (JL RM(T 	C 12.2 I est Maximu Frequer OBW Spectru ACLR Spuriou Transm	kbps m output ncy error m emissi s emissic it intermo	power on mask ons dulation	Fires: 1 950 Fires: 1 950 File Name File File Name File File Name File File File File File File File File	Memory A: 459,900 / 000 Memory A: 459,900 / 000 Memory B: 600 / 000	Ref-Cik Int Select Package te t
	_	EVM				D.T.O.L	1 2
	_	PCDE			Transport Channel Number	1 1	2
		TODE			Transport Block Size	244	100
					Transport Block Set Size	244	100
Type of User	User bit rate	DI DPCH		Remarks	Type of Error Protection	20 ms	40 ms
Information	ooor bit late	symbol rate	bit rate	rtomarito	Coding Rate	1/3	1/3
12,2 kbps	12,2 kbps	30 ksps	60 kbps	Standard Test	Rate Matching attribute	256	256
measurement					Size of CRC	16	12
channel					Parameter	Unit	Level
					Information bit rate	kbps	12.2
					DPDCH	kbps	60
					DPCCH	kbps	15
					DPCCH Slot Format #i	-	0
					DPCCH/DPDCH power ratio	dB	-5.46
					TFCI	-	On
					Repetition	%	23
					Slot Format #2 Is US Slot Format #2 and tests in subclause 8.	#5 are used for site select 6.3	ion diversity transmission
Discover MG3700	What's Pos A-E-F-6	ssible™		Slid	e 154	/	Inritsu

Gain Factor β							
 Spread signals are weighted by gain factors β. The β_□ are derived from quantized amplitude ratios β_□/β_c. 							
License option MX370101A Bib Strandard Bartster Settine Consult Settine Settine Simulation File Gen. Help License option MX370101A Bib Strandard Magnetic Settine Consult S	nputed automatically						
Simulation Link: Up Link Scrambling Code 0	C-18.54dB)						
He-DPOCH ONI ON OPDCH Beta d 15615/150 ACK Perer F1252 dB ACK_relation ACK_re	 (-15.84dB) (-12.52dB) (-12.52dB) 						
Patter Satter Fie Coded E-DPCCH [ON] Power F1548 dB [On Code/D = 1, SF = 256 Data [Ooded] E-DPCCH(Beta ed, k/Beta ec) [26(119/15)	 (-12.52dB) (-16.48dB) (-0.55dB), Carbel 						
Equivalent							

			Gain F	actor β			
Signalled values for	Quantized amplitude ratios	1					
β _c and β _d	β _c and β _d						
15	1.0						
14	14/15						
13	13/15		• • • • • • • • • • • • • • • • • • • •	•••••			
12	12/15			•			
11	11/15	Channel	Colo Colum			Signalled values for	Quantized amplitude ratios
10	10/15	Gnannel	dam setup			A E DEDCH	$A_{ad} = B_{ad}/B_{a}$
9	9/15			Contraction of the second			
8	8/15	DPC	CH Betac	11(11/15) - (-18.54dB)		29	168/15
7	7/15					28	150/15
6	6/15	DPD	CH Betad	15(15/15) - (-15.84dB)		27	134/15
5	5/15					26	119/15
4	4/15	HS-I	DPCCH	-) [2(22(45)]] (12(5040))		25	106/15
3	3/15		Delta ACK (Beta hs/ Beta	c) 8(30/15) - (-12.52dB)		24	95/15
2	2/15		Delta NACK (Beta hs/Beta	c) 8(30/15) - (-12.52dB)		23	84/15
1	1/15					22	75/15
0	Switch off		Delta CQI(Beta hs/ Beta	c) 8(30/15) - (-12.52dB)		21	67/15
	of Mich Part					20	60/15
		E-DF	PCCH(Betalec/Betalc)	6(19/15) 🔻 (-16.48dB)		19	53/15
Signalled values for	Quantized amplitude ratios					18	47/15
A ACK AMACK and Acou	$\Delta_{ha} = \beta_{ha}/\beta_{a}$	E-DF	PDCH (Betaed, k / Betac)	26(119/15) - (-0.55dB)		17	42/15
Ack, Akack and Acu					•••	16	38/15
0	30/15	0	K i	Cancel		15	34/15
/	24/15		— :		· .	14	30/15
6	19/15					13	27/15
5	15/15		:			12	24/15
4	12/15		Signalled values for	Quantized amplifyide re-	loc	11	21/15
3	9/15				105	10	19/15
2	8/15		A E-DPCCH	Alec = pec/pc		9	17/15
1	6/15		8	30/15		8	15/15
U	5/15	l .	7	24/15		7	13/15
			6	19/15		6	12/15
			5	15/15		5	11/15
			4	12/15		4	9/15
			3	9/15		3	8/15
			2	8/15		2	7/15
			1	6/15		1	6/15
			0	5/15		0	5/15
Discover Wh MG3700A-E	at′s Possible™ i-F-6		Slide	e 160			/inritsu

JL RIVIC HSDPA	Quantized Amplitude	Ratio
Sub-test 1	Sub-test 2	
hannel Gain Setup	Channel Gain Setup	
DPCCH Beta c 2(2/15) • (~17.87dB)	DPCCH Beta c 12(12/15) - (-8.17dB)	
DPDCH Beta d 15(15/15) - (-0.37dB)	DPDCH Beta d 15(15/15) - (-6.23dB)	
HS-DPCCH Delta ACK (Beta hs/ Beta c) 8(30/15) • (-11.85dB)	HS-DPCOH Deita AOK(Beta hs/ Beta c) 900/15) (-2.1568)	
Delta CQI(Beta hs/Beta c) 8(30/15) ▼ (-11.85dB)	For EVM test [22/15] ▼ (-2.15dB) [22/15] ▼ Defta CQKDeta hs/ Beta c) 8(30/15) ▼ (-2.15dB)	For EVM test
-DPCCH(Betalec/Betalec) 6(19/15) - (-dB)	106/15) 16/15) 29/15) E-DPCCH(Betalec/Betalec) 6(19/15) V (-dB)	0(5/15) 1(6/15) 2(8/15)
-DPDCH(Beta ed, k/Beta c) 26(119/15) - (-dB)	130/15) 4(12/15) 5(15/15) E-DPDCH(Beta ed, k/Beta c) 26(119/15] (-dB)	3(9/15) 4(12/15) 5(15/15)
OK	0(19/15) 7(24/15) 8(30/15) Cancel	6(19/15) 7(24/15) 8(30/15)
Sub-test 3	Sub-test 4	
annel Gain Setup	Channel Gain Setup	
DROCH Beta c (-7.224B)	DPOCH Beta c 15(15/15) - (-7.05dB)	
DPDCH Beta d 8(8/15) (-12.69dB)	DPDCH Beta d 4(4/15) - (-18.53dB	0
SPDCH Beta d [966/15] • (-12.69dB) SS-DPCOH Delta ACK(Beta hs/ Beta c) [930/15] • (-1.21dB)	DPDCH Beta d 4(4/15) (-18.53dB) HS-DPCCH Delta AOK(Beta hs/ Beta c) (3(30/15) (-1.03dB)	3)
DPDCH Beta d 880/15)	DPDCH Beta d 4(4/15) • (-18.53dB) HS-DPCCH Delta AOK(Beta hs/ Beta c) 9(30/15) • (-1.03dB) Delta NACK(Beta hs/ Beta c) 0(30/15) • (-1.03dB)	» For EVM test
DPDCH Beta d 980/15) (-12.69dB) HS-DPCCH Delta ACK(Beta hs/ Beta c) 8300/15) (-12.1dB) Delta ACK(Beta hs/ Beta c) 8300/15) (-1.21dB) Delta ACK(Beta hs/ Beta c) 8300/15) (-1.21dB) Delta ACK(Beta hs/ Beta c) 8300/15) (-1.21dB)	DPDCH Beta d 4(4/15) (-18.53dB) HS-DPOCH Delta AOK(Beta hs/ Beta c) 9(30/15) (-1.03dB) Delta NACK(Beta hs/ Beta c) 9(30/15) (-1.03dB) Tota/15) Delta CONBeta hs/ Beta c) 9(30/15) (-1.03dB))) For EVM test 7(24/15) ▼ (7(24/15) ▼
Bette District C1.28.89 DPDCH Beta d 982/15) <td>DPDCH Beta d 4(4/15) (-18.53dB HS-DPOCH Deita AOK(Beta hs/ Beta c) (360/15) (-1.03dB) Deita NACK (Beta hs/ Beta c) (360/15) (-1.03dB) 7C4/15) Deita COK(Beta hs/ Beta c) (360/15) (-1.03dB) 7C4/15) Deita COK(Beta hs/ Beta c) (360/15) (-1.03dB) 7C4/15) E-DPCCH(Beta sc/ Beta c) (309/15) (-1.03dB) 16/15) E-DPCCH(Beta sc/ Beta c) (509/15) (-dB)</td> <td>→ For EVM test 7/24/15) ▼ 16/15) 16/15) 2/8/15) 2/8/15)</td>	DPDCH Beta d 4(4/15) (-18.53dB HS-DPOCH Deita AOK(Beta hs/ Beta c) (360/15) (-1.03dB) Deita NACK (Beta hs/ Beta c) (360/15) (-1.03dB) 7C4/15) Deita COK(Beta hs/ Beta c) (360/15) (-1.03dB) 7C4/15) Deita COK(Beta hs/ Beta c) (360/15) (-1.03dB) 7C4/15) E-DPCCH(Beta sc/ Beta c) (309/15) (-1.03dB) 16/15) E-DPCCH(Beta sc/ Beta c) (509/15) (-dB)	→ For EVM test 7/24/15) ▼ 16/15) 16/15) 2/8/15) 2/8/15)
Brown Beted Bittoring Cristele DPDOH Beta d 880/15) Cristelee MS-DPFOCH Beta d 880/15) Cristelee MS-DPFOCH Delta ACK/Beta he/ Beta c) 860/15) Cristelee Delta ACK/Beta he/ Beta c) 860/15) Cristelee Cristelee Delta ACK/Beta he/ Beta c) 860/15) Cristelee Cristelee Delta ACK/Beta he/ Beta c) 860/15) Cristelee Cristelee E-DPCCH/Beta ec/ Beta c) 609/15) Cristelee Cristelee E-DPDCH/Beta ed, L/Beta c) 20019/15) Cristelee Cristelee	DPDOH Beta d 444/15) (-18.53dB HS-DPCOH Delta AOK(Geta hs/ Beta c) (960/15) (-1.03dB) For EVM test Delta AOK(Geta hs/ Beta c) (960/15) (-1.03dB) 7(24/15) Delta AOK(Geta hs/ Beta c) (960/15) (-1.03dB) 16/15) 26/15) (-1.03dB) (-1.03dB) 26/15) 16/15) (-1.03dB) (-1.03dB) 16/15) 26/15) (-1.03dB) (-1.03dB) 16/15) 26/15) (-1.03dB) (-1.03dB) 16/15) 26/15) (-1.03dB) (-1.03dB) 26/15) E-DPCOHBeta ec / Beta c) (-1.03dB) (-1.03dB) 26/15(16) E-DPCOHBeta ec / Beta c) (2.019/15) (-1.030)	→ For EVM test 724/15) • 16(7/5) 26(75) 26(75) 36(75) 36(75) 402/15) 56(57
DPDCH Beta d 8(6/15) (-12.69dB) HS-DPCCH Delta ACK(Beta hs/ Beta c) 8(50/15) (-1.21dB) Delta NACK(Beta hs/ Beta c) 8(50/15) (-1.21dB) Delta COI(Beta hs/ Beta c) 8(50/15) (-1.21dB) Delta COI(Beta hs/ Beta c) 8(50/15) (-1.21dB) Delta COI(Beta hs/ Beta c) 8(50/15) (-1.21dB) E-DPCCH(Beta ec/ Beta c) \$(0.9/15) (-dB) E-DPDCH(Beta ed, k/Beta c) 25(0.19/15) (-dB) OK Cancel	DPDOH Beta d 4(4/15) • (-18.53dB HS-DPCCH Delta AOK (Beta hs/ Beta c) 8(50/15) • (-1.03dB) Delta AOK (Beta hs/ Beta c) 8(50/15) • (-1.03dB) Delta AOK (Beta hs/ Beta c) 8(50/15) • (-1.03dB) Delta AOK (Beta hs/ Beta c) 9(50/15) • (-1.03dB) Delta AOK (Beta hs/ Beta c) 9(50/15) • (-1.03dB) Delta AOK (Beta hs/ Beta c) 9(50/15) • (-1.03dB) Delta AOK (Beta hs/ Beta c) 9(50/15) • (-1.03dB) Delta AOK (Beta hs/ Beta c) 9(50/15) • (-1.03dB) Startistic E-DPDCH(Beta ec/ Beta c) 9(19/15) • (-dB) G(19/15) E-DPDCH(Beta ec/ Atta c) 20(119/15) • (-dB) G(19/15) OK Cancel 0	For EVM test 724/15) ▼ 16/15) 16/15) 16/15) 16/15) 16/15) 16/15) 16/15) 16/15) 16/15) 16/15) 16/15) 16/15) 16/15) 16/15/15) 16/15/15) 16/15/15)

UL RMC HS	SUF	PA		Su	b-t	est	1			
DPOCH Beta c 11(11/15) (-18,54dB) DPDCH Beta d 15(15/15) (-15,84dB) US_DPDCH Beta d 15(15/15) (-15,84dB)	E-DPCCH E-DPDCH(s)	ON	Power Power Power/E-	-16.48 -0.55 DPDCH(SF4) I	dB Ch Co dB Ch Co Power [3.01	de 00 = 1, SF = 2 de 00 = 2(SF4) dB	156 Data Data (When 2sf2 -	Coded E-DCH and 2sf4 select	ed)	Edit
Delta ACK(Beta hs/ Beta c) 9(30/15) - (-12.52dB) Delta NACK(Beta hs/ Beta c) 8(30/15) - (-12.52dB)	E-TFCI	TB Size (bits)	E-TFCI	TB Size (bits)	E-TFCI	TB Size (bits)	E-TFCI	TB Size (bits)	E-TFCI	TB Size (bits)
E-DPDCH(Beta ec/ Beta c) [6(19/15)] (-12.626B) E-DPDCH(Beta ec/ Beta c) [6(19/15)] (-0.55dB) OK OK Cancel	0 1 2 3 4 5 6	18 120 124 130 135 141 147	30 31 32 33 34 35 36	389 405 422 440 458 477 497	60 61 62 63 64 65 66	1316 1371 1428 1487 1549 1613 1680	90 91 92 93 94 95 96	4452 4636 4828 5029 5237 5454 5680	120 121 122 123 124 125 126	15051 15675 16325 17001 17706 18440 19204
HSUPA Edit 2	7 8 9 10 11 12 13	153 159 166 172 180 187 195	37 38 39 40 41 42 43	517 539 561 584 608 634 660	67 68 69 70 71 72 73	1749 1822 1897 1976 2058 2143 2232	97 98 99 100 101 102 103	5915 6161 6416 6682 6959 7247 7547	127	20000
HARD Process Settine File E-DPDCH Data Coded E-DPDCH Data E-DPDCH Data	14 15 16 17 18 19	203 211 220 229 239 249	44 45 46 47 48 49	687 716 745 776 809 842	74 75 76 77 78 79	2325 2421 2521 2626 2735 2848	104 105 106 107 108 109	7860 8186 8525 8878 9246 9629		
E-DOH TTI Tome Pattern Langth T Hermation Bill Payload (2421 E-DOH KV Index 0 - E-DOH KV Index 0 - E-DOH KV Index 0 - E-TOCI Hayload Data (Priority - E-TTOCI Mormation (75 "Happy" Be 0 -	20 21 22 23 24 25 26	259 270 281 293 305 317 231	50 51 52 53 54 55 55	877 913 951 991 1032 1074	80 81 82 83 84 85 85	2966 3089 3217 3350 3489 3634 2784	110 111 112 113 114 115 116	10028 10444 10877 11328 11797 12286 12795		
PSN 0Carrel	20 27 28 29	344 359 374	50 57 58 59	1165 1214 1264	80 87 88 89	3784 3941 4105 4275	116 117 118 119	13325 13877 14453		
Discover What's Possible™ MG3700A-E-F-6	Slia	e 162						'nr	its	U

UL RMC H	SUP	Ά		Su	b-te	est	2			
DPCOH Beta c 6/6/15) (-13.99dB) DPDOH Beta d 15/05/15) (-6.03dB)	E-DPCCH E-DPDCH(s)	ON	Power Power 2) Power/E-	-7.97 -4.07 DPDCH(SF4) F	dB Ch Coc dB Ch Coc	de 00 = 1, SF = 2 de 00 = 2(SF4) dB	256 Data Data (When 2s12 d	Coded E-DCH and 2sf4 select	ted)	Edit
HS-DPCCH Deita ACK(Beta hs/ Beta c) (8(30/15) v (-7,974B) Deita NACK(Beta hs/ Beta c) (8(30/15) v (-7,974B)	E-TFCI	TB Size	E-TFCI	3GPI TB Size	P TS 25.	321 Anne TB Size	x B.3 E-TFCI	TB Size	E-TFCI	TB Size
Delta COl/Bata ha/ Bata c) 8 (20/15) (-7.97dB) E-DPCCH(Bata ac/ Bata c) 8 (20/15) (-7.97dB)	0 1 2	18 120 124	30 31 32	389 405 422	60 61 62	1316 1371 1428	90 91 92	4452 4636 4828	120 121 122	15051 1567t 1632t
E-DPDCHBeta ed, k/Beta c) 18(47/15) (-4.07dB) OK Cancel	3 4 5 6 7	130 135 141 147 153	33 34 35 36 37	440 458 477 497 517	63 64 65 68 67	1487 1549 1613 1680 1749	93 94 95 96 97	5029 5237 5454 5680 5915	123 124 125 126 127	1700 1770 1844 1920 2000
JPA Edit 🔀	8 9 10 11 12	159 166 172 180 187	38 39 40 41 42	539 561 584 608 634	68 69 70 71 72	1822 1897 1976 2058 2143	98 99 100 101 102	6161 6416 6682 6959 7247		
PHyCH HARD Process Settine, File E-DPCOH Data Coded KS-DSCH Configured	13 14 15 16	195 203 211 220	43 44 45 46	660 687 716 745	73 74 75 76	2232 2325 2421 2521	103 104 105 106	7547 7860 8186 8525		
E-DPDCH Data E-DDCH ¥ E-DPDCH Channel Codes [5F4 ¥ TICH E-DCH TTI [10ms ¥ Pattern Landfh]	17 18 19 20	229 239 249 259	47 48 49 50	776 809 842 877	77 78 79 80	2626 2735 2848 2966	107 108 109 110	8878 9246 9629 10028		
Identified 1013 E=DCH RV Index 0 • E=DCH Rv/bad Data PNRhr. • ORC Error Insertion Correct • E=TFCI Information 56 "Happy" Bit 0 •	21 22 23 24 25	270 281 293 305 317	52 53 54 55	913 951 991 1032 1074	81 82 83 84 85	3089 3217 3350 3489 3634	111 112 113 114 115	10444 10877 11328 11797 12286		
R5N 0	26 27 28 29	331 344 359 374	56 57 58 59	1119 1165 1214 1264	86 87 88 89	3784 3941 4105 4275	116 117 118 119	12795 13325 13877 14453		
Discover What′s Possible™ MG3700A-E-F-6	Slide	9 163						יחר	its	U

UL RMC H	SUF	ΡΑ		Su	b-t	est	5			
	E-DPCCH	ON _	Power	-15.38	dB Ch Co	de00 = 1, SF = 2	156 Data	Coded		
Channel Gain Setup	E-DPDCH(s)	ON _	Power	-0.44	dB Ch Co	de(0) = 2(SF4)	Data	E-DCH		Edit
DPOCH Beta c 15(15/15) - (-19.46dB)		E-DPDCH(SF	2) Power/ E-	DPDCH(SF4)	Power 3.01	dB	(When 2sf2	and 2sf4 select	ed)	
DPDCH Beta d 15(15/15) (-19.46dB)				3GP	P TS 25.	321 Anne	x B.3			
HS-DPCOH Defta AACK (Beta he/Beta c) <u>BS00/15)</u> ← 13.44.0(B) Defta NACK (Beta he/Beta c) <u>BS00/15)</u> ← (-13.44.0(B)	E-TFCI	TB Size (bits)	E-TFCI	TB Size (bits)	E-TFCI	TB Size (bits)	E-TFCI	TB Size (bits)	E-TFCI	TB Size (bits)
Delta COllecta hs/ Beta c) (5(30/15) (-13.444B)	0	18 120	30 31	389 405	60 61	1316 1371	90 91	4452 4636	120 121	15051 15675
E-DPDCH(Beta ed, k/Beta c) [7234/15] (+0.308b) E-DPDCH(Beta ed, k/Beta c) [270/34/15] (+0.44dB)	2 3 4	124 130 135	32 33 34	422 440 458	62 63 64	1428 1487 1549	92 93 94	4828 5029 5237	122 123 124	16325 17001 17706
Cancel	6 7	141 147 153	35 36 37	477 497 517	65 66 67	1613 1680 1749	95 96 97	5454 5680 5915	125 126 127	18440 19204 20000
	8 9 10	159 166 172	38 39 40	539 561 584	68 69 70	1822 1897 1976	98 99 100	6161 6416 6682		
ISUPA Edit	11 12	180 187	41 42	608 634	71 72	2058 2143	101 102	6959 7247		
PhyCH HARQ Process Setting File	13 14	195 203	43 44	660 687	73 74	2232 2325	103 104	7547 7860		
E-DPCCH Data Coded HS-DSCH Configured Yes	15 16	211 220	45 46	716 745	75 76	2421 2521	105 106	8186 8525		
E-DPDCH Data E-DCH E-DPDCH Channel Codes SF4	17 18	229 239	47 48	776 809	77 78	2626 2735	107 108	8878 9246		
TrCH	19	249	49	842			109	9629		
E-DCH III 10ms V Pattern Length I	20	259	50	913	81	2966 3089	110	10028		
thermation Bit Payload (2966) E-DCH RV Index 0	22	281	52	951	82	3217	112	10877		
	23	293 305	53 54	1032	83	3350 3489	113	11328		
E-TFCI Information 140 "Happy" Bit 0	25	317	55	1074	85	3634	115	12286		
RSN 0 -	26	331 344	56	1119	86	3784 3941	116	12795		
Cancel	28 29	359 374	58 59	1214 1264	88 89	4105 4275	118 119	13877 14453		
Discover What′s Possible™ MG3700A-E-F-6	Slid	e 167						ຳກເ	its	U

Number of created frames

The MG3700A has two arbitrary waveform memories from which different waveform patterns can be output separately. It is possible to add two signals, such as a desired signal + AWGN, using the baseband for output as one RF signal. When using memories A and B individually as normal, the memory length may be insufficient for handling a waveform pattern with a long period that is used in a receiver test. A long-period waveform pattern may be caused as a result of the settings for SFN included in BCH, or the settings for HARQ Process Cycle when [PN9] is selected for the DCH data type. This problem can be resolved by using the capacities of both memories A and B to generate a waveform pattern. This is supported by switching memories A and B alternately as shown in Fig. B-1. Note that it is not possible to add two signals such as AWGN and interference signals in this case.

If the data length is still insufficient using the above memory configuration, use the function to execute filtering processing using the FIR filter of the hardware incorporated in the MG3700A as shown in Fig. B-2. If a filtered waveform pattern at data generation exceeds the total capacity of memories A and B, this hardware filtering function is used to generate the waveform pattern automatically.

However, waveform patterns used in this configuration cannot be used for interference signals because the number of FIR filter taps is less than the normal waveform pattern. In this case, it is also not possible to add two signals, such as AWGN and interference signals.

86

Receiver Requirements for HSPA UE

Sensitivity

The sensitivity test is performed with the UE transmitter at full power (21 dBm or 24 dBm), as would most likely be the case at the edge of cell coverage. This allows for leakage of transmitter power to the receiver band. The sensitivity test is defined only for the 12.2 kbps voice reference test channel.

There are no HSDPA-specific or HSUPA-specific tests related to receiver sensitivity.

To achieve the required performance in the test case, quite large attenuation is required between the transmitter and receiver. The signal sent to the duplex filter in the UE is a higher power than the actual output power, due to attenuation by the duplex filter itself. Separation between transmitter and receiver must be achieved with both available duplex filter separation and band pass filters in the transmitter chain.

• Note the example transmitter shown in the figure using intermediate frequency in the transmitter section is only one of many possible solutions.

Receiver Requirements for HSPA UE

Maximum Input Level

Introduction of 16QAM makes it necessary to preserve more accurate phase and amplitude information throughout the receiver chain. Otherwise, 16QAM performance is severely degraded. To avoid this, a specific test case tests UE performance at the maximum input signal. This corresponds to when the UE is close to the BS in an area using 16QAM. The test case measures throughput to ensure proper HSDPA receiver chain operation at maximum input level. This makes the test case applicable to all devices supporting 16QAM. All UEs in Categories 1 to 10 can use this test case to validate tolerance to high input signal levels. Additionally, there is a separate test case using QPSK-only to test UE Categories 11 and 12. The HSDPA test case requires a throughput of 700 kbps with four codes and transmission in every third TTI. For reference, the maximum throughput with four codes and every third TTI is 960 kbps.

Discover What's Possible™ MG3700A-E-F-6

Slide 178

<u>/Inritsu</u>

Anritsu Corporation 5-1-1 Onna, Atsugi-shi, Kanagawa, 243-8555 Japan Phone: +81-46-223-1111 Fax: +81-46-296-1264

• U.S.A. Anritsu Company 1155 East Collins Blvd., Suite 100, Richardson, TX 75081, U.S.A. Toll Free: 1-800-267-4878 Phone: +1-972-644-1777 Fax: +1-972-671-1877 • Canada Anritsu Electronics Ltd.

Amitsu Electronics Ltd. 700 Silver Seven Road, Suite 120, Kanata, Ontario K2V 1C3, Canada Phone: +1-613-591-2003 Fax: +1-613-591-1006 • Brazil

Anritsu Eletrônica Ltda. Praca Amadeu Amaral, 27 - 1 Andar 01327-010-Paraiso-São Paulo-Brazil Phone: +55-11-3283-2511 Fax: +55-11-3288-6940 • U.K.

Anritsu EMEA Ltd. 200 Capability Green, Luton, Bedfordshire, LU1 3LU, U.K. Phone: +44-1582-433200 Fax: +44-1582-731303

• France Anritsu S.A. 9 Avenue du Québec, Z.A. de Courtabœuf 91951 Les Ulis Cedex, France Phone: +33.1-60-92-15-50 Fax: +33.1-64-46-10-65

• Germany Anritsu GmbH Nemetschek Haus, Konrad-Zuse-Platz 1 81829 München, Germany Phone: +49-89-442308-0 Fax: +49-89-442308-55 • Italy Anritsu S.p.A. Via Elio Vittorini 129, 00144 Roma, Italy Phone: +39-6-509-9711 Fax: +39-6-502-2425 • Sweden

Anritsu AB Borgafjordsgatan 13, 164 40 KISTA, Sweden Phone: +46-8-534-707-00 Fax: +46-8-534-707-30

Finland
 Anritsu AB
 Teknobulevardi 3-5, FI-01530 VANTAA, Finland
 Phone: +358-20-741-8100
 Fax: +358-20-741-8111

Denmark
 Anritsu A/S
 Kirkebjerg Allé 90, DK-2605 Brøndby, Denmark
 Phone: +45-72112200
 Fax: +45-72112210

• Spain Anritsu EMEA Ltd. Oficina de Representación en España Edificio Veganova Avda de la Vega, n° 1 (edf 8, pl 1, of 8)

 Avida de la vega, IF (eta 6, pi 1, or 6)
 28108 ALCOBENDAS - Madrid, Spain

 Phone: +34-914905761
 Fax: +34-914905762

 • United Arab Emirates

Anritsu EMEA Ltd. Dubai Liaison Office

P O Box 500413 - Dubai Internet City Al Thuraya Building, Tower 1, Suit 701, 7th Floor Dubai, United Arab Emirates Phone: +971-4-3670352 Fax: +971-4-3688460 • Singapore

Anritsu Pte. Ltd. 10, Hoe Chiang Road, #07-01/02, Keppel Towers, Singapore 089315 Phone: +65-6282-2400 Fax: +65-6282-2533 Specifications are subject to change without notice.

India Anritsu Pte. Ltd. **India Branch Office** Unit No. S-3, Second Floor, Esteem Red Cross Bhavan, No. 26, Race Course Road, Bangalore 560 001, India Phone: +91-80-32944707 Fax: +91-80-22356648 • P.R. China (Hong Kong) Anritsu Company Ltd. Units 4 & 5, 28th Floor, Greenfield Tower, Concordia Plaza, No. 1 Science Museum Road, Tsim Sha Tsui East, Kowloon, Hong Kong Phone: +852-2301-4980 Fax: +852-2301-3545 • P.R. China (Beijing) Anritsu Company Ltd. **Beijing Representative Office** Room 1515, Beijing Fortune Building, No. 5, Dong-San-Huan Bei Road, Chao-Yang District, Beijing 10004, P.R. China Phone: +86-10-6590-9230 Fax: +86-10-6590-9235 Korea Anritsu Corporation, Ltd. 8F Hyunjuk Building, 832-41, Yeoksam Dong, Kangnam-ku, Seoul, 135-080, Korea Phone: +82-2-553-6603 Fax: +82-2-553-6604 • Australia Anritsu Pty. Ltd. Unit 21/270 Ferntree Gully Road, Notting Hill, Victoria 3168, Australia Phone: +61-3-9558-8177

Fax: +61-3-9558-8255 • Taiwan Anritsu Company Inc. 7F, No. 316, Sec. 1, Neihu Rd., Taipei 114, Taiwan Phone: +886-2-8751-1816 Fax: +886-2-8751-1817

	-	
Please	Cor	ntact:

070207